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Appendix

Lemma 1. If there exists a continuum of homogenous borrowers whose utility can be
described with a representative utility function of the form U(L1, Ly) = m+a(Ly + Lo) —

%(L% + L3) —dLy Ly , one can derive a generalized inverse demand function:

T'i(Li,Lj) :a—bLi—dLj. (1)
Provided that both both banks do mot ration their customers and make non-negative
profits, the direct demand function is defined as:

a br; dr;

Li(ri,rj) = b+ d) - (B2 — d?) + (b2 — d?) (2)

Proof. We adopt the model of 7 by assuming there is a continuum of borrowers of the

same type with the following representative utility function, which is represented as:

b
U(Ly,Ly) = m+a(Ly + Lo) — 5(L;% + L3) — dL, Ly

Where m represents all other goods and p,, = 1 is the normalized loan rate for all
other goods. The representative borrower tries to maximize his utility subject to the
budget constraint Y > m + r1L; + roLo where Y is the income of the borrower. The

Lagrangian function to describe the optimization problem is as follows:

max L(Lq, L) =

m+a(Ly + Ly) — 3(L3 + L3) —dL1Ly + MY —m — 1Ly — r2Lo)

The Kuhn—Tucker conditions are:

a—bLy —dLy — My <0 Ly >0 Ly(a—0bLy —dLy —Ari) =0 (3)



a—bLy —dL; —Ara <0 Ly >0 Ly(a—0bLy—dLy — M) =0 (4)

1-A<0 m>0 m(l—X) =0 (5)

Y-m-—riLi—1r9Lo <0 A>0 A(Y*m*T1L1*T2L2):O (6)

If the borrower’s income Y is sufficiently large, such that m > 0 , from 5 we obtain

that:

A=1 (7)

which implies the equation below with (6):

Y=m-+riLi+rels (8)

Substituting (7) in (3) and (4), we obtain the following;:

a—bLy —dLy —71 <0 L1 >0 Li(a—bLy —dLy —71)=0 9)

a—bLy—dL; —75 <0 Ly>0 Ly(a—0bLy—dL; —15) =0 (10)

With positive demand for loans from both banks L; > 0 and Lo > 0 we obtain the

inverse demand curves below:

Tl(Ll,LQ) :a—bLl 7dL2 (11)

T2(L1, Lg) =a— bL2 — dL1 (12)



Since demand for loans of both banks is positive, we can invert the inverse demand

curves in order to obtain the direct demand curves (note that % = ﬁ), as follows:

a brq dro

Ly(ry,m2) = b+ d) - (b2 — d2) + (b2 — d?) (13)
a bro drq

L) =~ =y t =@ (14)

If the demand for one bank is zero (i.e., L; = 0) while the demand for the competitor
is positive (i.e., L; > 0), (9) and(10) imply that the inverse demand for loans from bank
? is:

and the direct demand function that bank i faces is:

a—71T;

Li(r;) = 5

At the same time, the Kuhn—Tucker conditions for the demand for loans j with the

binding constraint L; = 0 imply that:
rj > a—dL;.

O

Lemma 2. A capital regulated bank that has raised capital in the first stage faces the

following piecewise—defined cost function at the beginning of the second stage:

Te€ if L<e
c(L) = rpL + ce ife<L <ce/s (15)

(rp+cd)L+60(6L—e) if L>¢/s



Proof. Since the balance sheet constraint is binding, we can write D as a function of loans
and capital D = L — E — e. If the bank invests in loans L < e, it can refund its assets
solely out of the capital raised in the first stage at cost r.. Hence, D =0 and F = 0.

Intending to provide loans L > e, the bank needs to raise additional funds. Since
refunding with deposits is cheaper (by assumption) than raising additional capital, the
bank will refund the assets with deposits. No additional capital is required by regulation,
in which £ = 0 in the second stage. The cost of providing a loan amount e < L < ¢/s is
given by r.e + rp(L — e). Since 1. — rp = ¢, the cost of funding consists of the deposit
rate times the total loan amount plus the risk premium for the capital raised in the first
stage.

If the asset investment exceeds the first—stage loan capacity L > ¢/s, the bank is forced
to raise additional capital in the second stage in order to comply with the minimum
capital requirement. The additional capital is expressed as F¥ = 8L — e. Refunding cost
can therefore be summarized as rpD + r.e + rgE. Using the balance constraint leads to
rp(L—0L)+ (rp+¢)e+ (rp + ¢+ 0)§ (L — ¢/5), which can be simplified to the third

piece of the cost function. O

Lemma 3. a) For given values of e;,e;,0 under the assumed demand system, a best

response function R;(r;) is represented as:

(b—d);)—i—drj _. gl
(bfd)af(b2bfd2)ei+drj —. Rl
(bfd)azzrﬁbw —. Rl

Ri(rj) = (b—d)a—(bzb—dz)%erT'j —. RIV :
(b*d)a+drjzlz(rp+5(c+9)) —. RV
brj—(g—d)a —. RVI
sla+rqa+d(c+6) =RV



which is consistent if the following holds:

Rl «—  [0<Li(Ri(rj),r;) <ei A ry < rh(ei)]

R = [Li(Ri(rj),m5) = € A rh(er) <y <rh(e)]
RUT = [e; < Li(Ri(rj),rj) <ei/6 N rh(es) <rj <ri(e)]
RY = [Li(Ri(rj)i,rj) =ei/5 A rile) <rjp <rii(e)]
RV «— lei/6 < Li(Ri(r;),r5) A er(ei) <r; < er:O(ei)]
RV — [L;(Ri(r),7;) =0 A B0 < < B
RV «—  [Li(Ri(rj)i,r;) > LM A rE <.

b) Depending on the parameters of the model and the chosen capital in the first stage,

a mazimum of seven cases can occur, which are indicated above.

Proof. To prove part a) of Lemma 3, we proceed as follows. We first derive the first order
condition for each piece of the profit function that implicitly defines the best loan rate
response (i.e., R, RII RV for each of the cases discussed. Then we consider the points
of discontinuity (R!,: R'V). We then discuss the remaining possible cases (RY!, RV!T).
Finally, we show that part b) of Lemma 3 must hold.

From Lemma 2 we obtain bank i’s piecewise—defined objective function maz,, IL;(r;, 7).
A best response function R;(r;) is implicitly defined by II;(R;(r;),7;) = 0. The first or-
der conditions for the three pieces of bank i’s objective function can be summarized as

(ri — MC(L))L} + L; = 0 with L] = —;z2. Substituting L} and solving for r; gives:

(b—d)a+ dr; + b(MC)
20

(16)

r, =

Inserting the pieewise defined marginal cost into the best response function gives R!, R'/1 RV
RI: If the best response to r; results in a residual demand 0 < L(R;(r;),7;) < e;, the
marginal costs in the second stage are MC(L(p)) = 0. Substituting and solving for r;

gives R;(r;) = %. We now have to show that L;(R;(r;),r;) < e;Vr; < ré-(ei) =

2(b2—d?)e; —(b—d)a (b—d)a+dr;
d

. In closed form this can be rewritten as e; > (bid) - (bgfdz) o +




(bz,d_%. This can be simplified to 2e;(b* — d?) > a(b—d) +dr; , or w >

, which holds Vr; < rl(e;).

RML: If the best response to r; results in a residual demand e; < L;(R;(r;), ;) < %,
the second-stage marginal cost are MC(L(p)) = rp, which results in the best reac-

tion R;(r;) = (b_d)azw. We first show that e; < L;(R;(r;),r;) holds Vr;-‘(ei) =

2(b%2—d?)e; — (b—d)a+br L . 2(b2—d?)e; /5—(b—d)a
( )d( ) D<rj<r-(ei).:( )d/( ).

J

The closed form is e; <

a b (b—=d)a+dr;+brp
(b+d) (b2—d?) 2b

d) — brp +dr;, or

+ (deEp), which can be simplified to 2e;(b? — d?) < a(b —

2(b2—d?)e; —(b—d)a+brp
d

< 1, which holds ¥ r; > rl(e;).

a b (b—d)a+drj+brp+
(b+d)  (b2—d?) 2b

Similarly, it can be shown that L;(R;(r;),7;) < e;/6, with

(bi#g) < e;/d is true for Vr; < rf(ei)

RV: If the best response to r; results in a residual demand, represented as

Li(R;(rj),r;) > %, the optimal loan rate response is R;(r;) = (b_d)aerrj'gl;(rDJrs(chﬁ)) :

This is the best loan rate response if (bid) — (bgfdz,) (b=d)atdr, 'ZI;(TD+5(C+6)) + (bgdjilz) p

or

2 2 o~
2b"—d )e'i_(b_'?a+b(rD+°(c+6) < r; which is obviously true for all

2(b2—d?)e; /5—(b—d)a+b(rp+5(c+6)
d

rj > rf (e;) = as long as the non—negativity con-

straints of the maximization program are not binding.

R and RV result from the discontinuous jumps in the marginal cost function at
the points where L;(R;(r;),r;) = e; and L;(R;(r;),r;) = . These equalities define
the capital and capacity clearing loan rate pairs (r;,r;). Since Vr; < ré(ei), the best
loan rate response is L;(R;(r;),r;) < e; and Vr}’(ei) <r; < er(eZ-) the best loan rate
respond is e; < L;(R;(r;),r;) for ré(ei) <r; < r?(ei). Therefore, it must hold that

Li(Ri(Tj),T‘j) = €; similar, for TJL(GI') S Tj S Tf(ei) it must hold that LZ(RZ(TJ), T’j) = %.

RVL: This branch of the best response function results from the assumptions of our

model, i.e., the non—negativity constraints on demand in the optimization problem: 0 <

Lj= 45+ bzb_idﬁ— . Aloan rate pair (R;(r;), 7;) that result in a negative demand for




the opponent j makes the non—negativity constraint binding. Solving the constraint for r;

yields R;(r;) = 717”_(;_60“. Inserting L;(R;(rj),r;) = i (bzfdz)T‘j-l- (bzfdz) ij_(ﬁ_d)a

gives L;(R;(rj),r;) = 0.

RV . If rj > TJI-‘ZO, bank i’s best response loan rate is only increasing in r; as long as

the “residual demand” (note that bank i covers the entire market since L;(R; (r¥=?)

b TLZO) =

1
0) is smaller than the monopoly output L;(R;(r;),7;) < LM. Hence, it is only optimal to
respond to a further increase of bank r; with increasing r; as long as R;(r;) > rM with
rM being the monopoly loan rate that solves the maximization problem:

rM = argmaz(r;—rp—>3(c+0))L;r;+0e; implicitly defined by the first order condition.

Solving for the loan rate gives rM = 1(a+rq + 6(c+0)).

Since M is unique and independent of r; (depending solely on the exogenous model
parameters), the best response loan rate function becomes vertical. It would never be
beneficial to deviate from the monopoly loan rate for L;(R;(r;),r;) < LM. Hence, no

further best response branches can exist, which means that part b) must hold. O

The critical values of the opponent’s loan rate are implicitly defined by the intercept
of the different best response branches. Equating the different branches and solving for

r; we derive the critical values:

r(e;) : (R" = R') solving (b_d)2(ll)+d” = (b_d)“_(bzb_dz)eﬁd” for r; yields

2(b% — d?*)e; — (b—d)a
d

ré(ei) =

h . . . (b—d)a—(b>—d*)e;+dr; _ (b—d)a+dr;
r(e;) : (R = RHT) solving = 55

+brp .
5 for r; yields

2(b% — d*)e; — (b—d)a + brp
d

T;L(ei) =

2 2\ €4 .
er(ei) . (RMT = RV solving : (b_d)“'gzlrj+er — (b=d)az(b b_d e r; yields

2(()2 — d2)€i/(5 — (b — d)a + b?“D
d

r]’;(ei) =



J b

rH(e;) = 2(0> — d?)e;/d — (b—d)a+b(rp + 6(c+0))
j \€i) = y

L=0(¢;) : (RV = RYT) solving (b_d)a+drj"'22(rD+5(C+9)) = b”_(;_d)a for r; yields

bd(a — (rp + d(c+6)))
202 — d?

M
rk

7 (ei) : (RY = RYT) solving W =1(a+rqg+6(c+0)) for r; yields

_a(2b—d)+d(rp +d(c+0))

LIW .
ri o (ei) == m

rf(e;) : (R = RY) solving (b=d)a= (¥’ —djeitdr; _ (bfd)“+drjgl;(”’+5(c+9)) for r;



